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Abstract. An order-recursive variant of Gaussian elimina-

tion has been presented for efficient solution of linear eqtta-

tions resulting from augmenting the feed line impedence

matrix by block row and column vectors corresponding

to reactions associated with discontinuities in the moment

method simulation of MMIC elements. The potential utility

of the solution technique in a CAD environment is demon-

strated by applying it to the interactive design of microstrip

low-pass filter.

1. Introduction

The well-known method of moments (MoM) is widely used

in the simulation and computer-aided design (CAD) of mi-

crowave and millimeter-wave integrated circuits (MMICS)

(cf. [1], [2]). In MoM, the boundary value problem for the

unknown current distribution over the surface of the con-

ductors is formulated as an electrical field integral equation

(EFIE). The EFIE is then converted into a system of lin-

ear algebraic equations (for the current) by the application

of suitable basis and testing functions. The circuit charac-

teristics, such as S-parameters, radiation and metallization

losses, etc., can be derived from the computed current dis-

tribution,

The system (or moment) matrix that represents the re-

lationship between the basis and the test elements used to

solve for the current distribution, is typically dense. For

moderately high-order models (0(200 – 300)), the current

distribution may be obtained as the solution of a system

of linear algebraic equations using LU decomposition and

subsequent solution of two triangular systems of equations.

The computational complexity of the solution of system

of equations of order N is N3. For several applications

in circuit modeling, where N is fixed, use of conventional

method (via LU decomposition) of solution of system of

equations is adequate and provides the most efficient means

for computation.

However, in certain situations, the order of systems of

equations to be solved may change from N to N + M,

where the original (N x N) data matrix becomes a subma-
trix of the higher-order (N + M) x (N + M) matrix as a

result of augmenting the model. This is frequently encoun-

tered in characterization of MMIC elements where the data

matrix is recursively augmented with new row and column

vectors that correspond to circuit extensions, stubs, etc. At

present, each augmented matrix is treated as a new data ma-

trix and the solution of augmented system of equations is

recomputed from scratch. The resulting solution procedure

becomes computationally inefficient, and, as shown later, in

the worst case, the computational complexity can become

O((N + M)4). The primary objective of this paper is to

apply a variant of Gaussian elimination, called order recw--

sive Gaussian elimination (ORGE) [3], to develop a solution

procedure of comptttationat complexity 0((fV+Ivf)3). This

order of magnitude reduction in computations is clearly very

attractive for the CAD of MMICS.

2. Augmented Matrix Model of MMIC

2.1. Discontinuity Analysis

As an example of MMIC analysis where augmented matri-

ces discussed earlier occur, consider the two-port microstrip

discontinuity shown in Fig. l(a).

The input and’ output ports are connected by trartsmis-

sion lines at reference planes 1 and 2 to shunt coaxial ter-

minations (at 1’ and 2’). Application of MoM to this circuit

yields total currents on the whole structure, including the

connection lines. It is required to calculate complex ampli-

tude of the incident and reflected currents at planes 1 and

2 by discarding the influence of port connection lines and

coax excitation – a process known as de-embedding. Note

that the discontinuity in Fig. l(a) is excited by coaxial ca-

bles connected to de-etnbedding transmission lines of length

L. De-embedding requires the solution of additional sub-

problems such as the cascade of the input and output lines

(Fig. l(b)) and a line terminated in a short circuit (Fig. l(c))
m

to transform the open-circuit impedance (or Z-parameters)

matrix from planes ( 1‘, 2’) to (1,2) [4]. Alternatively, one

could determine the complex amplitude of the incident wave

at port 1 from the transmission line model in Fig. l(b) and

embed it in the solution of Fig. l(a) to compute the S-

parameters [5]. The latter approach is used to arrive at the

augmented matrix model of the circuit.

Assume that the input and output lines (of length L)
support IVi and lVO basis elements, and the discontinuity

(between planes 1 and 2) supports N~ basis elements. Then,
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the matrix equations resulting from application of MoM to

the circuit elements in Fig. l(a) and l(b), respectively, can

be written as:

Knowing the port currents from the solution of(1) and (2),

the two independent S-parameters for a symmetrical two-

port may be computed as

It is evident from (1) and (2) that the system matrix in (2) is

a submatrix of the matrix in (1). Therefore, if(2) is solved

first, it should be possible to embed its solution in (1) to

make the solution of(1) more efficient. Note that the block

submatrices of the system matrix in (1) may be rearranged

to get

[

~ii ~io

Zoi zoo

Zdi Zdo

Clearly, the system (4) is a bordered matrix, obtained by

augmenting the system matrix of (2), and is referred to as

augmented matrix model of the discontinuity. In the sequel,

it will be discussed how the augmented matrix equation can

be solved efficiently.

2.2. Interactive Filter Design

The use of ORGE will provide further efficiency in MMIC

design applications. Consider the double-stub low-pass fil-

ter shown in Fig. 2. The input and output lines indicated
by ports 1 and 2 are oriented longitudinally. It is desired to

design two stubs (each of length Ys) such that the filter has

a prespecified cut-off frequency and pass-band roll-off. It

should be pointed out that, although the desired filter can be

obtained using circuit simulation, we have considered this

simple example to illustrate the computational advantages

of ORGE in microwave CAD,
Assume that the input and output transmission lines are

gridded such that they support Ni and iVO basis elements,

respectively. On applying the MoM, the cascade of these

two lines generates a moment matrix which we will refer to

as line matrix. The line matrix and the corresponding sys-

tem of equations for computing line currents are identical to

eq. (2). Next, we add two stubs symmetrically on either side

of the line (see Fig. 2) and iteratively increase their length

until the filter response (insertion loss) displays the specified

cut-off frequency and the pass-band roll-off. During each

iteration, an increasingly large-order linear system of equa-

tions needs to be solved to verify whether or not the desired

response has been achieved. Assume that the stub length

is increased successively in M steps, where each iteration

contributes additional Nd rows and columns to the system

matrix. Then, at the r-th iteration, the system matrix will

be of (N, + No + ?’Nd)-th order, r = 1, ..., M. When the

inter-relation of stubs with lines is accounted for, the result-

ing system matrix at M:th iteration will have the following

structure:

[

zi~ z~” I
Zid, Zid. . . . zid~

Z“i z“” Zd ::, Zodv . . . zod~ 1
I Zd,i Zd, o I Zdld... Zdid..,. Zdld.uI

“. “.

z~’i z;”” ; “. Z;”d” ..“. zd:dMZdd, . .

1 zd~i Zdiwo zdM4 . . . Zhfdr . . . z&d.w J
(5)

with appropriate voltage vector and the unknown current

distribution vector. The system in (5) represents the aug-

mented matrix model of the design.

3. Order Recursive Gaussian Elimination

In this section, an order recursive variant of conventional

Gaussian elimination method for computation of x. in

is presented. The proposed atgorithm is developed for the

case when all the leading principal submatrices of the in-

finite dimensional matrix A are nonsingular. Therefore,

the solution (albeit suboptimal) can always be computed

without the need of pivoting. Assume that the Gaussian

elimination on (A., b, ) has been computed and that for

(A,+l, b,+]) is desired.

3.1. The ORGE Algorithm

The operations of order recursive Gaussian elimination can

be divided into two major categories.

1. The first category consists of updating the new col-

umn of the augmented matrix A,+l such that the

effect of row operations performed on the matrix A,

k reflected in the (r + 1)-th column of Ar+l and

2. The second category consists of the elimination of the

elements of (r+ 1)-th row to transform the augmented

pair [Ar+l, b,+l ] to art upper trapezoidal form.

Generat steps for performing these operations are discussed

next.

Updating A,.+l

At the (r + 1)-th step, assume that following the recursive

Gaussian elimination procedure mentioned above the pair
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[Ar I br] has been reduced to an upper trapezoidal form.

On augmenting A, by an additional row and column and

b. by an additional row, we have

[A,+l lb,+,]=

[

all alz . . . al ,r+l

7121 fizz . . . az)r+l

I “.

1~r,l 7r,2 “ “ ar,r+l

%+-1,1 ar+l,2 “.” ar+l ,r+l

To update the

[:

&z,v+l

r + 1)-th column of AT+l, set

1%,1 j

(6)

where: = denotes assignment. This transformation accounts

for elimination of the first column of Aj- using all as the

pivot. Next, to account for the operations performed for

eliminating as,z to as)r using &ZZas the pivotj set

[i

?J3,r+l

ar,r+l

This is continu

.—.—

a3,T+l

ar,r+l [

7132

— ?@.+1 ;

%’,2

unti

?&,r+l := ?&.)r+l — &_l,r+l~r,r-l

at which point the (r + 1)-th column of Ar+l is fully up-

dated.

Triangularizing A,+l

Now, using fii,~, i = 1, . . . . r, as pivots, the elements a~+l, 1

to a,+l,~ are reduced to zero and ar+l ,,+1 and br+l are ap-

propriately modified. Specifically, to eliminate the (r+ 1, 1)

element of updated Ar+l, set,

%+1,[1...r+l] := %.+1,[1...r+l] – ‘Jh+l,lal, [l. r+l]

‘.+1 := br+l – qr+l,lh

and in general, to eliminate (r + 1, k)-th element, set

%+l,[k X+1] := ~r+l,[k. .r+l] – %+l>k~k,[k..r+l]

br+l := b+l – nr+l,~h

(7)

Note that in (7), due to the assumption of non-singularity of

the leading principal submatrices, the element tir+l ,r+l of

the transformed matrix Ar+l is not O, hence, the recursion
can be continued. Based on the discussion in the preceding

paragraphs, a formal algorithm for order recursive Gaussian

elimination (without pivoting) can be easily formulated [31.

3.2. Computational Complexity

It is clear from the description in previous section that the

computational complexity of ORGE is identical to Gaussian

elimination. The only difference is the sequence in which

the elimination is performed. Hence in ORGE, the elimi-

nation and back substitution together require O(iV + A4)3

operations, where (N + ill) is the dimension of the final

augmented matrix. However, if a new Gaussian elimination

together with back substitution is performed for each system

of order (N + i~~), i = O, ..., r, where N~ is the number
of rows and columns by which the matrix is augmented in

each iteration and (rN~) = M, then the operations count is

approximately ~~=o(IV + iN~)3. To see that the latter is

an order of magnitude higher than the former, consider the

following example.

Let N = 100, ~d = 10, r = 10, i.e., we are aug-

menting the system matrix by 10 rows and columns in each

iteration and performing a total of 10 iterations. The result-

ing operations count is shown in Fig. 3. Note that since the

intent is to observe the order or magnitude complexity, the

operations count has been weighted down by (N + iN~)3

for both methods at each iteration. It can be seen clearly

that while ORGE operations count exhibits a slope of O (im-

plying O(iV + A4)3 operations count), as anticipated, the

count for the case when the entire solution is recomputed

from scratch shows constant nonzero slope.

4. Simulation Results

Fig. 4 shows the insertion loss at a few iterations for a mi-

crostrip double-stub, low-pass filter (shown in Fig. 2) on

alumina substrate (% = 9.9, h = 0.127 mm). The metal-

ization is 5 microns thick copper (a = 5.8 x 107 S/m). The

stub length is increased in 5 iterations form YS = 1.458 mm

to YS = 2.916 mm. The current distribution over the filter
is computed at each iteration using an efficient PC-based

moment method implementation described in [6], which

employs interpolated Green’s functions and exploits sym-

metries and redundancies in the various reactions to fill the

moment matrix. Once filled, the system of linear equations

is solved using the ORGE algorithm. The S-parameters are

computed at the reference planes located on the input and

output lines at a distance of 2 mm from each filtering stub.

Fig. 3 clearly shows that the designed cut-off fre-

quency of 10 GHz and the passband roll-off of about

40 dB are achieved after the fifth iteration. Compu-

tationatly, instead of solving the linear systems of or-

der (Ni + No + i~d), i = 0,1,...,5, which involves

O(M(fVi + No + M)3) operations, using ORGE, we ef-

fectively solved one (J’Vi + No + M)-th order system with

O((iVj + NO + M)3 ) operations. For the present simulation,

fV~ = No = 20, Nd = 10 and r = 5. The solution of linear

system of equations using ORGE required 7.5 x 105 com-

plex operations, compared to 2.6 x 106 required for solving

the complete problem from scratch at each iteration.
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Fig. 1(a). A two-port microstrip discontinuity.

1(b). De-embedding line cascaded to its mirror image.

1(c). De-embedding line terminated in a short circuit.
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Fig. 3. Order of magnitude estimate of operations count.

5. Concluding Remarks

In this paper, an order-reettrsive variant of Gaussirm elimina-

tion has been presented for efficient solution of linear equa-

tions resulting from augmenting the feed line impedance

matrix by block row and column vectors corresponding

to reactions associated with discontinuities in the moment

method simulation of MMIC elements. The usefulness of

ORGE in a CAD environment was demonstrated by its ap-
plication to the design of a microstrip double-stub low-pass

filter. ORGE speeds up de-embedding the circuit parame-

ters of discontinuities by up to a factor of N/c – where N

is the order of the circuit model and c is a constant consid-

erably smaller than N. It is anticipated to be very useful in

the simulation, optimization and computer aided design of
microwave circuits.
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