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Abstract. An order-recursive variant of Gaussian elimina-
tion has been presented for efficient solution of linear equa-
tions resulting from augmenting the feed line impedence
matrix by block row and column vectors corresponding
to reactions associated with discontinuities in the moment
method simulation of MMIC elements. The potential utility
of the solution technique in a CAD environment is demon-
strated by applying it to the interactive design of microstrip
low-pass filter.

1. Introduction

The well-known method of moments (MoM) is widely used
in the simulation and computer-aided design (CAD) of mi-
crowave and millimeter-wave integrated circuits (MMICs)
(cf. [1], [2]). In MoM, the boundary value problem for the
unknown current distribution over the surface of the con-
ductors is formulated as an electrical field integral equation
(EFIE). The EFIE is then converted into a system of lin-
ear algebraic equations (for the current) by the application
of suitable basis and testing functions. The circuit charac-
teristics, such as S-parameters, radiation and metallization
losses, etc., can be derived from the computed current dis-
tribution.

The system (or moment) matrix that represents the re-
lationship between the basis and the test elements used to
solve for the current distribution, is typically dense. For
moderately high-order models (O(200 — 300)), the current
distribution may be obtained as the solution of a system
of linear algebraic equations using LU decomposition and
subsequent solution of two triangular systems of equations.
The computational complexity of the solution of system
of equations of order N is N®. For several applications
in circuit modeling, where N is fixed, use of conventional
method (via LU decomposition) of solution of system of
equations is adequate and provides the most efficient means
for computation.

However, in certain situations, the order of systems of
equations to be solved may change from N to N + M,
where the original (N x N') data matrix becomes a subma-
trix of the higher-order (N + M) X (N + M) mairix as a
result of augmenting the model. This is frequently encoun-
tered in characterization of MMIC elements where the data

CH3577-4/95/0000-1435$01.00 © 1995 IEEE

matrix is recursively augmented with new row and column
vectors that correspond to circuit extensions, stubs, etc, At
present, each augmented matrix is treated as a new data ma-
trix and the solution of augmented system of equations is
recomputed from scratch. The resulting solution procedure
becomes computationally inefficient, and, as shown later, in
the worst case, the computational complexity can become
O((N + M)*). The primary objective of this paper is to
apply a variant of Gaussian elimination, called order recur-
sive Gaussian elimination (ORGE) [3], todevelop a solution
procedure of computational complexity O((N+M)3). This
order of magnitude reduction in computations is clearly very
attractive for the CAD of MMICs.

2. Augmented Matrix Model of MMIC

2.1, Discontinuity Analysis

As an example of MMIC analysis where augmented matri-
ces discussed earlier occur, consider the two-port microstrip
discontinuity shown in Fig. 1(a).

The input and output ports are connected by transmis-
sion lines at reference planes 1 and 2 to shunt coaxial ter-
minations (at 1’ and 2'). Application of MoM to this circuit
yields total currents on the whole structure, including the
connection lines. It is required to calculate complex ampli-
tude of the incident and reflected currents at planes 1 and
2 by discarding the influence of port connection lines and
coax excitation — a process known as de-embedding. Note
that the discontinuity in Fig. 1(a) is excited by coaxial ca-
bles connected to de-embedding transmission lines of length
L. De-embedding requires the solution of additional sub-
problems such as the cascade of the input and output lines
(Fig. 1(b)) and a line terminated in a short circuit (Fig. 1(c))
to transform the open-circuit impedance (or Z-parameters)
matrix from planes (1',2’) to (1,2) [4]. Alternatively, one
could determine the complex amplitude of the incident wave
at port 1 from the transmission line model in Fig. 1(b) and
embed it in the solution of Fig., 1(a) to compute the S-
parameters [5]. The latter approach is used to arrive at the
augmented matrix model of the circuit.

Assume that the input and output lines (of length 1)
support N; and N, basis elements, and the discontinuity
(between planes 1 and 2) supports Vg basis elements. Then,
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the matrix equations resulting from application of MoM to
the circuit elements in Fig. 1(a) and 1(b), respectively, can
be written as:
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Knowing the port currents from the solution of (1) and (2),
the two independent S-parameters for a symmetrical two-
port may be computed as
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It is evident from (1) and (2) that the system matrix in (2) is
a submatrix of the matrix in (1). Therefore, if (2) is solved
first, it should be possible to embed its solution in (1) to
make the solution of (1) more efficient. Note that the block
submatrices of the system matrix in (1) may be rearranged
to get
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Clearly, the system (4) is a bordered matrix, obtained by
augmenting the system matrix of (2), and is referred to as
augmented matrix model of the discontinuity. In the sequel,
it will be discussed how the augmented matrix equation can
be solved efficiently.

2.2, Interactive Filter Design

The use of ORGE will provide further efficiency in MMIC
design applications. Consider the double-stub low-pass fil-
ter shown in Fig. 2. The input and output lines indicated
by ports 1 and 2 are oriented longitudinally. It is desired to

design two stubs (each of length Ys) such that the filter has -

a prespecified cut-off frequency and pass-band roll-off. It
should be pointed out that, although the desired filter can be
obtained using circuit simulation, we have considered this
simple example to illustrate the computational advantages
of ORGE in microwave CAD.

Assume that the input and output transmission lines are
gridded such that they support N; and N, basis elements,
respectively. On applying the MoM, the cascade of these
two lines generates a moment matrix which we will refer to
as line matrix. The line matrix and the corresponding sys-
tem of equations for computing line currents are identical to
eq. (2). Next, we add two stubs symmetrically on either side
of the line (see Fig. 2) and iteratively increase their length
until the filter response (insertion loss) displays the specified
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cut-off frequency and the pass-band roll-off. During each
iteration, an increasingly large-order linear system of equa-
tions needs to be solved to verify whether or not the desired
response has been achieved. Assume that the stub length
is increased successively in M steps, where each iteration
contributes additional Ny rows and columns to the system
matrix. Then, at the r-th iteration, the system matrix will
be of (N, + N, + rNg)-thorder,» = 1, ..., M. When the
inter-relation of stubs with lines is accounted for, the result-
ing system matrix at M-th iteration will have the following
structure:
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with appropriate voltage vector and the unknown current
distribution vector. The system in (5) represents the aug-
mented matrix model of the design.

3. Order Recursive Gaussian Elimination

In this section, an order recursive variant of conventional
Gaussian elimination method for computation of x, in

A.x. = b,

is presented. The proposed algorithm is developed for the
case when all the leading principal submatrices of the in-
finite dimensional matrix A are nonsingular. Therefore,
the solution (albeit suboptimal) can always be computed
without the need of pivoting. Assume that the Gaussian
elimination on (A,,b,) has been computed and that for
(Ar41, by is desired.

3.1. The ORGE Algorithm
The operations of order recursive Gaussian elimination can
be divided into two major categories.
1. The first category consists of updating the new col-
umn of the augmented matrix A,4; such that the
effect of row operations performed on the matrix A,
is reflected in the (r + 1)-th column of A4 and
2. The second category consists of the elimination of the
elements of (r+1)-throw to transform the augmented
pair [A, 11, br4;] to an upper trapezoidal form.
General steps for performing these operations are discussed
next.
Updating A,

At the (r + 1)-th step, assume that following the recursive
Gaussian elimination procedure mentioned above the pair



[A, | b,] has been reduced to an upper trapezoidal form.
On augmenting A, by an additional row and column and
b, by an additional row, we have

[Art1bry] =
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To update the (» + 1)-th column of A, 44, set
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where ;= denotes assignment. This transformation accounts
for elimination of the first column of A, using a;; as the
pivot. Next, to account for the operations performed for
eliminating as » to a3 » using @y, as the pivot, set

a3,r 41 3,741 h2
: =l 41
ar,r+1
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This is continued until

&r,r-{-l = ar,r+1 - &r—l,r+177r,r—1

at which point the (r + 1)-th column of A, is fully up-
dated.

Triangularizing A, 4

Now, using &; ;,7 = 1,...,r, as pivots, the elements a,41 1
to a,41,- are reduced to zero and a@y4.1 41 and b, are ap-
propriately modified. Specifically, to eliminate the (r+1,1)
element of updated A, 41, set,

f‘r+1,[1~-r+1] &r+1,[1-~r+1] - 777‘+1,1a1,[1~-r+1]

by — Nr+1,1b1

br+l

and in general, to eliminate (r + 1, k)-th element, set
= e 1] T Nkl [ 1)

A1,k -r41)
br-|—1 — Mr41 ,kbk

br+l

)

Note that in (7), due to the assumption of non-singularity of
the leading principal submatrices, the element &1 »41 Of
the transformed matrix A,y is not 0, hence, the recursion
can be continued. Based on the discussion in the preceding
paragraphs, a formal algorithm for order recursive Gaussian
elimination (without pivoting) can be easily formulated [3].
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3.2. Computational Complexity

It is clear from the description in previous section that the
computational complexity of ORGE is identical to Gaussian
elimination. The only difference is the sequence in which
the elimination is performed. Hence in ORGE, the elimi-
nation and back substitution together require O(N + M)?
operations, where (IV + M) is the dimension of the final
augmented matrix. However, if a new Gaussian elimination
together with back substitutionis performed for each system
of order (N +iN4),1=0,...,r, where Ny is the number
of rows and columns by which the matrix is augmented in
each iteration and (rN;) = M, then the operations count is
approximately ) ;_o(N + iNg)?. To see that the latter is
an order of magnitude higher than the former, consider the
following example.

Let N = 100, Ng = 10, r = 10, ie., we are aug-
menting the system matrix by 10 rows and columns in each
iteration and performing a total of 10 iterations. The result-
ing operations count is shown in Fig. 3. Note that since the
intent is to observe the order or magnitude complexity, the
operations count has been weighted down by (N + iN4)?
for both methods at each iteration. It can be seen clearly
that while ORGE operations count exhibits a slope of O (im-
plying O(N + M)? operations count), as anticipated, the
count for the case when the entire solution is recomputed
from scratch shows constant nonzero slope.

4. Simulation Results

Fig. 4 shows the insertion loss at a few iterations for a mi-
crostrip double-stub, low-pass filter (shown in Fig. 2) on
alumina substrate (¢, = 9.9, A = 0.127 mm). The metal-
ization is 5 microns thick copper (o = 5.8 x 107 S/m). The
stub length s increased in 5 iterations form Y5 = 1.458 mm
to Ys = 2.916 mm. The current distribution over the filter
is computed at each iteration using an efficient PC-based
moment method implementation described in [6], which
employs interpolated Green’s functions and exploits sym-
metries and redundancies in the various reactions to fill the
moment matrix. Once filled, the system of linear equations
is solved using the ORGE algorithm. The S-parameters are
computed at the reference planes located on the input and
output lines at a distance of 2 mm from each filtering stub.

Fig. 3 clearly shows that the designed cut-off fre-
quency of 10 GHz and the passband roll-off of about
40 dB are achieved after the fifth iteration. Compu-
tationally, instead of solving the linear systems of or-
der (N; + N, 4 iNy), i = 0,1,...,5, which involves
O(M(N; + N, + M)?) operations, using ORGE, we ef-
fectively solved one (N; + N, + M)-th order system with
O((N;+ N, + M)?) operations. For the present simulation,
N; = N, =20, Ng = 10 and » = 5. The solution of linear
system of equations using ORGE required 7.5 x 10° com-
plex operations, compared t0 2.6 x 10° required for solving
the complete problem from scratch at each iteration.
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Fig. 1(a). A two-port microstrip discontinuity.
1(b). De-embedding line cascaded to its mirror image.
1(c). De-embedding line terminated in a short circuit.
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Fig. 3. Order of magnitude estimate of operations count.

5. Concluding Remarks

In this paper, an order-recursive variant of Gaussian elimina-
tion has been presented for efficient solution of linear equa-
tions resulting from augmenting the feed line impedance
matrix by block row and column vectors corresponding
to reactions associated with discontinuities in the moment
method simulation of MMIC elements. The usefulness of
ORGE in a CAD environment was demonstrated by its ap-
plication to the design of a microstrip double-stub low-pass
filter. ORGE speeds up de-embedding the circuit parame-
ters of discontinuities by up to a factor of N/c — where N
is the order of the circuit model and c is a constant consid-
erably smaller than N. It is anticipated to be very useful in
the simulation, optimization and computer aided design of
microwave circuits.
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